A Survey on Sign Language ATM For The Blind

Authors

  • Meghana J Dept. of Computer Science and Engineering, Jyothy Institute of Technology, Bengaluru, India
  • Nayana Lakshmi K Dept. of Computer Science and Engineering, Jyothy Institute of Technlogy, Bengaluru, India
  • Prerana B K Dept. of Computer Science and Engineering, Jyothy Institute of Technlogy, Bengaluru, India
  • Varshitha K Dept. of Computer Science and Engineering, Jyothy Institute of Technology, Bengaluru, India
  • Nagaraj A Dept. Of Computer Science & Engineering, Jyothy Institute of Technology, Bangalore, India

DOI:

https://doi.org/10.5281/zenodo.4515543

Keywords:

Sign Language, Gestures, ATMs, Blind, Microcontroller, Survey

Abstract

The blind population often face difficulties in accessing ATM machines to withdraw money, which forces them to visit the bank. This makes them lose their time, thus causing them inconvenience. In order to overcome this issue, most of the ATM keypads offer Braille embossed keys with an intention to guide a blind individual to access the system. Though proven to be useful, the blind people with no knowledge of Braille fail to access these systems independently. Thus, to overcome this issue, other ways to access the ATM machines must be explored. One way out is to utilise Sign Language gestures to interact with the system in an environment that is secure. The survey on different methods proposed to recognise the sign language is conducted in this paper.

Downloads

Download data is not yet available.

References

https://en.wikipedia.org/wiki/Visual_impairment

https://www.medicinenet.com/blindness/article

Ebey Abraham, Akshatha Nayak and Ashna Iqbal “Real-Time Translation of Indian Sign Language using LSTM” 2019 Global Conference for Advancement in Technology (GCAT)Bangalore, India. Oct 18-20, 2019.

K. SASIREKHA*,M. NIVETHA, A. INDUMATHI and D. RENUKADEVI “ATM Machine For Blind People”.

Drish Mali, Rubash Mali, Sushila Sipai and Sanjeeb Prasad Panday (PhD)”Two Dimensional (2D)Convolutional Neural Network for Nepali Sign Language Recognition”978-1-5386-9141- chs0/18/$31.00 ©2018 IEEE.

Yuichiro Mori and Masahiko Toyonaga “Data-Glove for Japanese Sign Language Training System with Gyro-Sensor “2018 joint 10th conference and intelligent system and 19th International Symposism.

Yuna Okayasu,Tatasunori and Maitai Dalhan “Performance Enhancement By Combining Visual Clues To Identify Sign Language Motion” IEEE 2017.

Abdulla Eqab, Tamer Shanableh “Android Mobile App for Real-Time Bilateral Arabic Sign hdbLanguage Translation Using Leap Motion Controller” 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA).

S Yarisha Heera, Madhuri K Murthy,Sravanti V S“Talking Hands” InternationalConference on Innovative Mechanisms for Industry Applications(ICIMIA 2017).

Abhishek B. Jani1 (Member, IEEE), Nishith A. Kotak (Member, IEEE) and Anil K. Roy(Senior Member, IEEE)”Sensor Based Hand Guesture Recognition System for English Alphabets used is Sign Language of Deaf Mute People” 978-1-5386-4707-3/18/$31.00 ©2018 IEEE.

Sanmuk Kaur “Electronic Device Control Using Hand Gesture Recognition System For Differently Abled”.

Nitipon Navaitthiporn , Preeyarat Rithcharung , Phitnaree Hattapath , C. Pintavirooj “Intelligent glove for sign language communication” The 2019 Biomedical Engineering International Conference (BMEiCON- 2019).

Shruthi.G, Sarayu.K.P, Sangeetha.R, Sanjoy Das “Design of ATM Accessing System for blind using real-time video processing through Gestures” International Journal of Computer Applications (0975 –8887) Volume 119 – No.11, June 2015.

Muhammad Shafiq, Jin-Ghoo Choi, Muddesar Iqbal,Muhammad Faheem “Skill specific spoken dialogues based personalized ATM design to maximize effective interaction for visually impaired person” A.Marcus (Ed.): DUXU 2014, Part IV, LNCS 8520, pp. 446–457, 2014.

Meenakshi Panwar “Hand Gesture based Interface for Aiding Visually Impaired” 978-1-4673- 0255-5/12/$31.00c 2012 IEEE.

Paul D. Rosero-Montalvo; Pamela Godoy-Trujillo, Edison Flores-Bosmediano, Jorge Carrascal-Garc?a,Santiago Otero-Potosi, Henry Benitez-Pereira and Diego H. Peluffo- Ordonez “Sign Language Recognition Based on Intelligent Glove Using Machine Learning Techniques” 978-1-5386-6657-9/18/$31.00 c 2018 IEEE.

Neven Saleh, Mostafa Farghaly, Eslam Elshaaer and Amr Mousa “Smart glove-based gestures recognition system for Arabic sign language” 2020 International conference on Innovative trends in communication and Computer Engineering(ITCE2020).

Andrews Samraj and Naser Mehrdel and Shohel Sayeed “Sign Language Communication and Authentication using sensor Fusion of Hand Glove and Photometric Signal” 2017 8th International Conference on Information Technology (ICIT).

Zain Murtaza, Hadia Akmal and Wardah Afzal “Human Computer Interaction based on Gestural Recognition/Sign Language to Text Conversion”.

Dhruva N., Rupanagudi S.R., Neelkant Kashyap H.N. (2013) Novel Algorithm for Image Processing Based Hand Gesture Recognition and Its Application in Security. In: Unnikrishnan S., Surve S., Bhoir D. (eds) Advances in Computing, Communication, and Control. ICAC3 2013. Communications in Computer and Information Science, vol 361. Springer,Berlin,Heidelberg.https://doi.org/10.1007/978-3-642-36321-4_51

S. R. Rupanagudi et al., "A high speed algorithm for identifying hand gestures for an ATM input system for the blind," 2015 IEEE Bombay Section Symposium (IBSS), Mumbai, 2015,pp.1-6, doi: 10.1109/IBSS.2015.7456642.

N. Dhruva, S. R. Rupanagudi, S. K. Sachin, B. Sthuthi, R. Pavithra and Raghavendra, "Novel segmentation algorithm for hand gesture recognition," 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), Kottayam, 2013, pp. 383-388, doi: 10.1109/iMac4s.2013.6526441.

S. S. P G, P. S. Nayak, S. V, S. K, and S. S. G, “Blind Friendly ATM Software System”, pices, vol. 1, no. 4, pp. 36-38, Aug. 2017.

C. V. Reddy, D. M. Ramani, G. K, H. K, and S. B. P, “Gesture Recognition System for the Blind”, pices, no. PaCER 2020, pp. 189-191, Jul. 2020.

Downloads

Published

2021-02-07

How to Cite

[1]
M. J, N. L. K, P. . B K, V. . K, and N. A, “A Survey on Sign Language ATM For The Blind”, pices, vol. 4, no. 10, pp. 254-257, Feb. 2021.

URN