Low Power High Speed Vedic Techniques in Recent VLSI Design – A Survey

Authors

  • Swathi Dayanand Department of ECE, BNMIT, Bangalore, India
  • Varshitha K R Department of ECE, BNMIT, Bangalore, India
  • Rohini T Department of ECE, BNMIT, Bangalore, India
  • Yasha Jyothi M Shirur Department of ECE, BNMIT, Bangalore, India
  • Jyoti R Munavalli Department of ECE, BNMIT, Bangalore, India

DOI:

https://doi.org/10.5281/zenodo.4247825

Keywords:

Vedic mathematics, VLSI, Nikhilam, Urdhva Tiryakbhyam, Yavadunam, Ekanyunena Purvena, Anurupyena

Abstract

Advancement in the Artificial Intelligence (AI) and Machine Learning (ML) has influenced complex designs to be integrated in Very Large-Scale Integration (VLSI) Design. Designers are concentrating on high speed and low power techniques to facilitate the needs of the technology requirements. In multiple AI applications, Digital Signal Processor is the building block, optimization of it may solve the issues related to computation of the data signal at faster rate consuming less power using Vedic mathematics. In this paper, a detailed review is made on recent applications of Vedic Mathematics in the domain of VLSI to yield novel design, efficient architecture for Squarer, Multiplier, Arithmetic unit, Cubic and divider circuits along with their crucial performance criteria. It is deduced that the use of Vedic Sutras in formulating algorithms for digital logic circuit design has led to simplified architecture and yielded higher speed, low power consumption and enhanced efficiency of operation.

Downloads

Download data is not yet available.

References

K. P. Karani, “An empirical study on role of Vedic mathematics in improving the speed of basic mathematical operations”, “ISSN : 2249-0558,” no. April, 2017.

K Durga Bhavani, N V N J Sri Lakshmi, M Venkat Sai, A Venkatesh, G D Sai Teja, “High speed VLSI Squaring unit of Binary Number Design with Yavadunam Sutra and Bit Reduction, Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 2, pp . 775–778, 2019, doi: 10.35940/ijitee.b6879.129219.

S. M.C, S. Bimba.M, and M. Vucha, “Design and FPGA Implementation of High Speed Vedic Multiplier,” Int. J. Comput. Appl., vol. 90, no. 16, pp. 6–9, 2014, doi: 10.5120/15802-4641.

V. Meghana, S. Sandhya, R. Aparna, and C. Gururaj, “High speed multiplier implementation based on Vedic Mathematics,” in 2015 International Conference on Smart Sensors and Systems, IC-SSS 2015, 2017, doi: 10.1109/SMARTSENS.2015.7873593.

G. Sameer, M. Sumana and S. Kumar, “Novel High Speed Vedic Mathematics Multiplier using Compressors” International Journal of Advanced Technology and Innovative Research, Vol.7, Issue.2, pp.0244-0248, 2015.

D. K. Kahar and H. Mehta, “High speed Vedic multiplier used Vedic mathematics,” in Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems, ICICCS 2017, 2017, vol. 2018-Janua, pp. 356–359, doi: 10.1109/ICCONS.2017.8250742.

G. Murugesan and S. Lavanya, “Design and implementation of high speed multiplier using Vedic mathematics,” ARPN J. Eng. Appl. Sci., vol. 10, no. 16, pp. 6758–6764, 2015.

P. Saha, A. Banerjee, P. Bhattacharyya, and A. Dandapat, “High speed ASIC design of complex multiplier using Vedic mathematics,” TechSym 2011- Proc. 2011 IEEE Students’ Technol. Symp., vol. 3, no. 1, pp. 237–241, 2011, doi: 10.1109/TECHSYM.2011.5783852.

Nagaraju, M., R. Surya Prakash and Bolguddu Vijay Bhaskar. “High Speed ASIC Design of Complex Multiplier Using Vedic Mathematics.” (2013).

S. R. Huddar, S. R. Rupanagudi, M. Kalpana, and S. Mohan, “Novel high speed Vedic mathematics multiplier using compressors,” in Proceedings - 2013 IEEE International Multi Conference on Automation, Computing, Control, Communication and Compressed Sensing, iMac4s 2013, 2013, pp. 465–469, doi: 10.1109/iMac4s.2013.6526456.

P. D. Pawale and V. N. Ghodke, “High speed Vedic multiplier design and implementation on FPGA,” Int. J. Appl. Res., vol. 1, no. 7, pp. 239–244, 2015.

M. Pradhan and R. Panda, “High speed multiplier using Nikhilam Sutra algorithm of Vedic mathematics,” Int. J. Electron., vol. 101, no. 3, pp. 300–307, 2014, doi: 10.1080/00207217.2013.780298.

T. Rajalakshmi and M. R. Mahalakshmi, “Design of Vedic Multiplier Using SQRT Carry Select Adder (CSLA) ,” Int. J. MC

Sq. Sci. Res., vol. 9, no. 1, pp. 34–43, 2017, doi: 10.20894/ijmsr.117.009.001.005.

S. Arish and R. K. Sharma, “Run-Time-Reconfigurable Multi-Precision Floating-Point Matrix Multiplier Intellectual Property Core on FPGA,” Circuits, Syst. Signal Process., vol. 36, no. 3, pp. 998–1026, 2017, doi: 10.1007/s00034-016-0335-2.

A. Deepa and C. N. Marimuthu, “High Speed VLSI Architecture for Squaring Binary Numbers Using Yavadunam Sutra and Bit Reduction Technique,” Int. J. Appl. Eng.

V. M. and P. Kumar, “VLSI Implementation of High Speed-Low Power-Area Efficient Multiplier Using Modified Vedic Mathematical Techniques,” Recent Patents Comput. Sci., vol. 9, pp. 216–221, Jan. 2017, doi: 10.2174/2213275908666150220203501.

S. Patil, D. Manjunatha, and D. Kiran, Design of speed and power efficient multipliers using Vedic mathematics with VLSI implementation. 2014.

Y. Deodhe, S. Kakde, and R. Deshmukh, Design and Implementation of 8-Bit Vedic Multiplier Using CMOS Logic. 2013.

R. K.Bathija, R. S. Meena, S. Sarkar, and R. Sahu, “Low Power High Speed 16x16 bit Multiplier using Vedic Mathematics,” Int. J. Comput. Appl., vol. 59, no. 6, pp. 41–44, 2012, doi: 10.5120/9556-4016.

G. Ganesh Kumar and V. Charishma, “Design of High Speed Vedic Multiplier using Vedic Mathematics Techniques,” Int. J. Sci. Res. Publ., vol. 2, no. 1, pp. 2250–3153, 2012, [Online]. Available: www.ijsrp.org.

S. Koushighan, K. Hariharan, and V. Vaithiyanathan, “Design of an optimized high speed multiplier using Vedic mathematics,” Contemp. Eng. Sci., vol. 7, no. 9–12, pp. 443–448, 2014, doi: 10.12988/ces.2014.4328.

V. K N, K. S, and S. K, “Vlsi Implementation of High Speed Area Efficient Arithmetic Unit Using Vedic Mathematics,” ICTACT J. Microelectron., vol. 2, no. 1, pp. 198–202, 2016, doi: 10.21917/ijme.2016.0034.

D. Kumar, P. Saha, and A. Dandapat, “Vedic algorithm for cubic computation and VLSI implementation,” Eng. Sci. Technol. an Int. J., vol. 20, no. 5, pp. 1494–1499, 2017, doi: 10.1016/j.jestch.2017.10.001.

S. Panda, R. Das, S. Raheman, and T. Sahoo, “VLSI Implementation of Vedic Multiplier Using Urdhva– Tiryakbhyam Sutra in VHDL Environment: A Novelty,” IOSR J. VLSI SIGNAL Process., vol. Volume 5, p. PP 17-24, Feb. 2015, doi: 10.9790/4200-05131724.

Harish Kumar and Hemanth Kumar A R, “Design and Implementation of Vedic Multiplier using Compressors,” Int. J. Eng. Res., vol. V4, no. 06, pp. 230–233, 2015, doi: 10.17577/ijertv4is060321.

R. Marimuthu, K. Dayalan, P. Dharani, and S. Priya, High speed energy efficient ALU design using Vedic multiplication techniques. 2009.

L. Sriraman and T. Prabakar, “Design and implementation of two variable multiplier using KCM and Vedic Mathematics,” Mar. 2012, doi: 1109/RAIT.2012.6194554.

H. Tiwari, G. Gankhuyag, C. Kim, and Y. Cho, Multiplier design based on ancient Indian Vedic Mathematics, vol. 2. 2008.

N. R. Mistri, S. B. Somani, and V. V. Shete, “Design and comparison of multiplier using Vedic mathematics,” in Proceedings of the International Conference on Inventive Computation Technologies, ICICT 2016, 2016, vol. 2, doi: 10.1109/INVENTIVE.2016.7824870.

N. G. Deshpande and R. Mahajan, “" Ancient Indian Vedic Mathematics Based Multiplier Design for High Speed and Low Power Processor ",” in International Journal of Advanced Research in Electrical, 2014, vol. 3, no. 4

A. Khan and R. Das, “Novel approach of multiplier design using ancient Vedic mathematics,” in Advances in Intelligent Systems and Computing, 2015, vol. 340, pp. 265–272, doi: 10.1007/978-81-322-2247-7_28.

U. B., “HIGH SPEED MULTIPLIER USING VEDIC MATHEMATICS,” Int. J. Res. Eng. Technol., vol. 03, no. 01, pp. 548–552, 2014, doi: 10.15623/ijret.2014.0301092.

Richa S, Manjit K and Gurmohan S 2015 Design and FPGA implementation of optimized 32-bit Vedic multiplier and square architectures In: Proceedings of the international conference on Industrial instrumentation and control.

Sriraman L, Saravana Kumar K and Prabakar T N 2013 Design and FPGA implementation of binarysquarer using Vedic mathematics In: Proceedings of the 4th international conference on computing, communication and networking technologies.

Vaijyanath K, Linganagouda K and Subhash K 2013 Low power square and cube architectures using Vedic Sutras. In: Proceedings of the 5th international conference on signal and image processing.

“Design and simulation of 64 bit divider using Vedic Maths” no. January, 2017, doi: 01.0401/ijaict.2014.07.18.

Prabir Saha, Arindam Banerjee, Partha Bhattacharyya, Anup Dandapat, “Vedic Divider: Novel Architecture (ASIC) For High Speed VLSI Applications”, International Symposium On Electronics System Design,pp-67-71,2011.

Soma BhanuTej,” Vedic Divider-A High performance Computing Algorithm For VLSI Application”, IBM system and Technology Groups’’.

R.Thamil Chelvan, S.Roobini Priya,” Implementation of Fixed and Floating Point Division Using Dhvajanka Sutra”.

Ratiranjan Senapati, Bandan Kumar Bhoi, Manoranjan Pradhan (2013) ‘Novel Binary Divider Architecture for high speed VLSI applications’, Proceedings of 2013 I.E.E.E. Conference on Information and Communication Technologies.

Shantanu Oke, Suraj Lulla, Prathamesh Lad (2014) ‘VLSI (FPGA) Design for Distinctive Division Architecture using the Vedic Sutra ‘Dhwajam’’, International Conference on Devices, Circuits and Systems(ICDCS)

V. Kunchigi, L. Kulkarni, S. Kulkarni, Low power square and cube architectures using Vedic sutras, in: Proc. of Fifth Int. Conf. on Signal and Image Processing(ICSIP), Jeju Island, 2014, pp. 354–358.

H. Thapliyal, S. Kotiyal, M.B. Srinivas, Design and analysis of A novel parallel square and cube architecture based on ancient Indian Vedic mathematics, in:48th Midwest Symp. on Circuits and Systems, KY, USA, 2005, pp. 1462–1465.

Jan M. Rabaey and Massoud Pedram “LOW POWER DESIGN METHODOLOGIES”, Springer Science and Business Media New York,1996.

B. Chittaluri, “Implementation of Area Efficient IEEE-754 Double Precision Floating Point Arithmetic Unit Using Verilog,” vol. 2, no. 12, pp. 15–21, 2015.

Ramanamma.P, “low power square and cube architectures using Vedic sutras”, International Journal of Engineering Research and General Science Volume 5, Issue 3, May-June, 2017

S. Madhok, K. Goswami, and T. Kumar, “Capacitance Scaling Based Energy Efficient Vedic Divider using Paravartya Yojayet on 28nm FGPA,” Gyancity J. Eng. Technol., vol. 2, no. 1, pp. 18–30, 2016, doi: 10.21058/gjet.2016.2103.

P. S. Kasliwal, B. P. Patil, and D. K. Gautam, “Performance evaluation of squaring operation by Vedic mathematics,” IETE J. Res., vol. 57, no. 1, pp. 39–41, 2011, doi: 10.4103/0377-2063.78327.

T. A. A. Broadbent and J. Shankaracharya, “Vedic Mathematics,” Math. Gaz., vol. 50, no. 374, p. 440, 1966, doi: 10.2307/3613999.

Jagadguru Swami Sri Bharati Krisna Tirthaji Maharaja, Vedic Mathematics: Sixteen Simple Mathematical Formulae from the Veda, Delhi (1965).

Downloads

Published

2020-10-05

How to Cite

[1]
S. Dayanand, V. K R, R. T, Y. J. M. Shirur, and J. R. Munavalli, “Low Power High Speed Vedic Techniques in Recent VLSI Design – A Survey”, pices, vol. 4, no. 6, pp. 147-156, Oct. 2020.

URN