
Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 1, Issue 7, October 2017

Proceedings of National Conference on Emerging Trends in VLSI, Embedded and Networking (NC-EVEN 17), May 2017

© ΠCES 2017. All right reserved.

Publisher: PiCES Journal, www.pices-journal.com 134

NC-EVEN was held at Brindavan College of Engineering, Bengaluru, India on 11th May, 2017.

Ensuring the Adaptive Path for the Routing Using

DSR Protocol in Ad-hoc Wireless Network

Basavaraju S
Associate Professor, Dept. of ISE, Brindavan College of Engineering, Bangalore – 63

Abstract: In this paper, the idea to ensure the adaptive

nature of the routing tables maintained in the memory.

Whenever the routing protocol detects the new path for

transferring of packets to the destination node it has to

update the information to the memory. So the proposed

idea is to save the routing information in the cache

memory rather than in the ram. Whenever the re-

routing take place to same route no need to broadcast

the route once again so the client machine can fetch the

information from the cache which is the fastest

memory.

Keywords: Routing; DSR; Cache; Broadcast.

I. INTRODUCTION

In today’s world networking is essential for every
aspect of the work. So only the network is not sufficient
for the process to run. The network can be a wired and a
wireless network. The problem with wired network is it
has to maintain physically. It is also not going to work
faster. So the introduce of the wireless protocol made the
networking feature to an extern extent.

Ad hoc wireless network consists of mobile nodes
(hosts), that are connected by wireless links. Routing
protocols used for traditional wired network cannot be
directly applied in ad hoc wireless networks due to their
highly dynamic topology, absence of established
infrastructure for centralized administration, bandwidth
constraints, resource constraints.

II. EXISTING SYSTEM

Prior work in DSR used heuristics with ad hoc
parameters to predict the lifetime of a link or a route.
However, heuristics cannot accurately estimate timeouts
because topology changes are unpredictable. Prior
researches have proposed to provide link failure feedback
to TCP so that TCP can avoid responding to route failures
as if congestion TCP performance degrades significantly
in Ad hoc Networks due to the packet losses.

III. DISTRIBUTED ALGORITHM HAS THE FOLLOWING

DESIRABLE PROPERTIES

 Distributed: The algorithm uses only local
information and communicates with neighborhood
Nodes; therefore, it is scalable with network size.

 Adaptive: The algorithm notifies only the nodes that
have cached a broken link to update their Caches;
therefore, cache update overhead is minimized.

 Proactive on-demand: Proactive cache updating is
triggered on-demand, without periodic behavior.

 Without ad hoc mechanisms: The algorithm does not
use any ad hoc parameters, thus making route caches
fully adaptive to topology changes.

IV. CLIENT/SERVER INTERACTION IN AD-HOC

DISTRIBUTED NETWORK

The client has the job of initiating contact with the
server. In order for the server to be able to react to the
client’s initial contact, the server has to be ready. This
implies two things. First, the server program cannot be
inactive; it must be running as a process before the client
attempts to initiate contact.

Second, the server program must have some sort of
door (i.e. socket) that welcomes some initial contact from
a client (running on an arbitrary machine). The client’s
initial contact is referred to as ―knocking on the door‖.

Fig 1. Socket Interface

With the server process running, the client process can
initiate a TCP connection to the server. This is done in the
client program by creating a socket object. When the
client creates its socket object, it specifies the address of
the server process, the IP address of the server and the
port number of the process. Upon the creation of the
socket the server hears the knocking, it creates a new door
(i.e. new socket) that is dedicated to that particular client.
In practice, the welcoming door is a Server socket object
that calls the welcome Socket. When a client knocks on
this door, the program invokes welcome Sockets’s accept
() method, which creates a new door for the client. Now
there exists a TCP connection between the server and the
client. The TCP connection is a direct virtual pipe

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 1, Issue 7, October 2017

Proceedings of National Conference on Emerging Trends in VLSI, Embedded and Networking (NC-EVEN 17), May 2017

© ΠCES 2017. All right reserved.

Publisher: PiCES Journal, www.pices-journal.com 135

NC-EVEN was held at Brindavan College of Engineering, Bengaluru, India on 11th May, 2017.

between the client’s socket and the server’s connection
socket. The client process can send arbitrary bytes into its
socket; TCP guarantees that the server process will
receive each byte in the order sent.

V. DISTRIBUTED CACHE UPDATING

To meet the diverse quality-of-service (QoS)
requirements of emerging multimedia applications,
communication networks should provide end-to-end QoS
guarantees. QoS routing is the first step towards this goal.
It seeks to find routes that satisfy a set of QoS constraints
while achieving overall network efficiency. Therefore,
unlike current routing protocols, QoS routing protocols
rely on dynamic network state information for computing
QoS routes. Frequent route computing and network state
updates, especially in large networks, can cause
computing and traffic overhead, respectively. Therefore,
scalability to large networks has been identified as one of
the key issues in designing a QoS routing protocol. It is
desirable to minimize these overheads without sacrificing
the overall routing performance.

In QoS-capable networks, routes are computed upon
arrival of calls. The main advantage of this on-demand is
its simplicity. However, in large networks with high
arrival rates, this approach can cause significant
computing load. The pre-computing technique has been
proposed and shown to be an effective solution to reduce
route computing load. The principle is to compute routes
as a background process and use them when a call arrives,
therefore reducing the computing load upon each arrival.
In this paper, focus on route caching that has been
recently proposed as a solution to reduce the route
computing load by reusing already computed routes.

In route caching, a newly computed rout e is stored in
a cache for possible use by future calls. Upon arrival of a
call, the cache is searched for a route that can satisfy the
requested QoS parameters. If no such route is found i n
the cache, then a new route has to be computed. Because
cache size is limited, cache replacement policies should
be used when the cache is full. In addition, when several
feasible routes are found in the cache, eficiently. While
caching is a promising approach to reduce route
computing load, believe that recent proposals have
taken very simplistic approaches and several fundamental
issues have received no attention. Firstly, the hierarchical
architecture of very large networks has not been taken
into account. Large networks are potentially crosses
several domains. Considering that each domain represents
only an aggregated view of its internal topology and state
information, the important question is:

How can such an end-to-end route be cached
efficiently? Finally cached routes are subject to changes
in the network conditions and should be regularly
updated. The simple update techniques that try to
periodically re-compute all cached routes can cause
considerable computing load.

In this paper, propose a novel distributed cache
architecture to reduce the route computing load, while
addressing the above-mentioned issues. Our distributed

cache architecture has several advantages as follows: It
can scale to very large networks since it has a distributed
nature. It has been designed to be easily deployable in
networks with multiple domains. A cache content
management/replacement technique called cache flushing
has been developed. It suits the distributed nature of our
cache architecture. The traditional cache replacement
techniques take action when the cache is full and a new
entry has to be added. In contrast, the cache flushing
works in the background and always maintains some free
space in the cache elements of the proposed distributed
cache architecture (accurately define the meaning of the
cache element

Once a route is cached, our distributed cache
architecture does not rely on network state updates and
operates independently. Therefore, our cache architecture
does not suffer from inaccuracy of the network states
information caused by topology aggregation, delays in the
distribution of the network states, or network state update
interval. Instead, our architecture directly monitors only
those parts of the network that are more likely to be used

In this way, it intelligently adapts to the changes in the
network states. This is done by a novel technique called
cache snooping which has been developed to alleviate the
effects of network state fluctuations on the cached routes
with minimum overhead Cache snooping increases the
routing tolerance to inaccurate network state information.
This improves the overall routing performance, especially
in the presence of highly inaccurate network state
information.

Another technique that is designed to increase the
performance of the distributed cache architecture is
Borrowing, route borrowing lets a long end-to-end cached
route to be partially reused to major reduction in route
computing load.

 It is considered simplicity as a key design issue for
distributed cache architecture and its associated.
Therefore, the distributed cache architecture relies on
simple but efficient algorithms and techniques so that the
added complexity to the network is minimized

In this paper, it is assume that network links and nodes
are fault-free and function perfectly. This let us to focus
on exploring different aspects of the distributed cache
architecture and its operation. It is also worth mentioning
that the distributed nature of the proposed cache
architecture is an essential pre-requisite for developing
the cache snooping. As detail throughout the paper, it
becomes clear that without the distributed cache
architecture in place, the cache snooping cannot be
developed.

VI. CACHE TABLE

Design a cache table that has no capacity limit.
Without capacity limit allows DSR to store all discovered
routes and thus reduces route discoveries. The cache size
increases as new routes are discovered and decreases as
stale routes are removed.

There are 4 fields in a cache table entry:

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 1, Issue 7, October 2017

Proceedings of National Conference on Emerging Trends in VLSI, Embedded and Networking (NC-EVEN 17), May 2017

© ΠCES 2017. All right reserved.

Publisher: PiCES Journal, www.pices-journal.com 136

NC-EVEN was held at Brindavan College of Engineering, Bengaluru, India on 11th May, 2017.

1. Dest: It specifies the destination node to which
Message is to be sent.

2. Bandwidth: It specifies the bandwidth of the node
through which the route follows.

3. Address: It specifies the complete route taken by
message to reach the destination node.

4. Date: The date of route update.

5. Time: The time of route update.

Module 1: Route Request

When a source node wants to send packets to a
destination to which it does not have a route, it initiates a
Route Discovery by broadcasting a ROUTE REQUEST.
The node receiving a ROUTE REQUEST checks whether
it has a route to the destination in its cache. If it has, it
sends a ROUTE REPLY to the source including a source
route, which is the concatenation of the source route in
the ROUTE REQUEST and the cached route. If the node
does not have a cached route to the destination, it adds its
address to the source route and rebroadcasts the ROUTE
REQUEST.

When the destination receives the ROUTE
REQUEST, it sends a ROUTE REPLY containing the
source route to the source. Each node forwarding a
ROUTE REPLY stores the route starting from itself to the
destination. When the source receives the ROUTE
REPLY, it caches the source route.

Module 2: Message Transfer

The Message transfer relates with that the sender node
wants to send a message to the destination node after the
path is selected and status of the destination node through
is true. The receiver node receives the message
completely and then it send the acknowledgement to the
sender node through the router nodes where it is received
the message.

Module 3: Route Maintenance

Route Maintenance, the node forwarding a packet is
responsible for confirming that the packet has been
successfully received by the next hop. If no
acknowledgement is received after the maximum number
of retransmissions, the forwarding node sends a ROUTE
ERROR to the source, indicating the broken link. Each
node forwarding the ROUTE ERROR removes from its
cache the routes containing the broken link.

Module 4: Cache Updating

When a node detects a link failure, our goal is to
notify all reachable nodes that have cached that link to
update their caches. To achieve this goal, the node
detecting a link failure needs to know which nodes have
cached the broken link and needs to notify such nodes
efficiently. Our solution is to keep track of topology
propagation state in a distributed manner.

VII. CONCLUSION

This paper has presented a protocol for routing
packets between wireless mobile hosts in an ad hoc
network. Unlike routing protocols using distance vector or
link state algorithms, our protocol uses dynamic source
routing which adapts quickly to routing changes when
host movement is frequent, yet requires little or no
overhead during periods in which hosts move less
frequently. Based on results from a packet-level
simulation of mobile hosts operating in an ad hoc
network, the protocol performs well over a variety of host
movement simulated, the overhead of the protocol is quite
low, falling to just 1% of total data packets transmitted for
moderate movement rates in a network of 24 mobile
hosts. In all cases, the difference in length between the
routes used and the optimal route lengths is negligible,
and in most cases, route lengths are on average within a
factor of 1.02 of optimal.

 In currently expanding simulations to incorporate
some additional optimizations and to quantify the effects
of the individual optimizations on the behavior and
performance of the protocol. are also continuing to
study other routing protocols for use in ad hoc networks,
including those based on distance vector or link state
routing, as well as the interconnection of an ad hoc
network with a wide-area network such as the Internet,
reachable by some but not all of the ad hoc network
nodes. Although this paper does not address the security
concerns inherent in wireless networks or packet routing,
are currently examining these issues with respect to
attacks on privacy and denial of service in the routing
protocol. Finally, are beginning implementation of the
protocol on notebook computers for use by students in an
academic environment.

REFERENCES

[1] David F. Bantz and Fr´ed´eric J. Bauchot. Wireless LAN design
alternatives. IEEE Network, 8(2):43–53, March/April 1994.

[2] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia

Zhang. MACAW: A media access protocol for wireless LAN’s.
In Proceedings of the SIGCOMM ’94 Conference on

Communications Architectures, Protocols and Applications, pages

212–225, August 1994.

[3] Rober t T. Braden, editor. Requirements for Internet hosts—
communication layers. Internet Request For Comments RFC
1122, October 1989.

[4] Roy C. Dixon and Daniel A. Pitt. Addressing, bridging, and

source routing. IEEE Network, 2(1):25–32, January 1988.

[5] Deborah Estrin, Daniel Zappala, Tony Li, Yakov Rekhter, and
Kannan Varadhan. Source Demand Routing:

[6] Packet format and forwarding specification (version 1). Internet
Draft, January 1995. Work in progress.

[7] Daniel M. Frank. Transmission of IP datagrams over
NET/ROMnetworks. In ARRL Amateur Radio 7th Computer

Networking Conference, pages 65–70, October 1988.

[8] Bdale Garbee. Thoughts on the issues of address resolution and
routing in amateur packet radio TCP/IP networks.In ARRL

Amateur Radio 6th Computer Networking Conference, pages 56–
58, August 1987.

