
Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 4, Issue 4, July 2020

Part of the Proceedings of the 1st All India Paper writing Competition on Emerging Research - PaCER 2020

© PiCES Journal / Publisher: WorldServe Online 2020. www.pices-journal.com

 This work is licensed under a Creative Commons Attribution 4.0 International License.
Permissions beyond the scope of this license may be available at PiCES Journal Open Access Policy

Visit here to cite/refer this article 39

Abstraction of Functional Modules from a

Legacy ‘C’ Program using Program Slicing

Padmapriya Patil
Assistant professor, Department of Electronics and

communication Engineering, PDACE, Kalburgi,

Karnataka, padmazapur@gmail.com

Dr. R N Kulkarni
Prof. and Head, Department of Computer Science

and Engineering, BITM, Ballari, Karnataka,

rn_kulkarni@rediffmail.com

Abstract: The present computation industry is growing

very fast. Lot of improvements have taken place, as a

result of which high speed computation with inbuilt

parallel computation is the emerging technology for

many of the parallel or multicore processors. Thus this

technology is replacing the earlier technologies of

sequential computation, leaving very little scope for the

sequentially executing programs and their supporting

software systems. These systems can neither utilize the

modern computing resources nor scale upto their

demands. Also, in contrary to the modern computational

systems, the sequential executing legacy software

systems are the systems which are a result of continuous

developmental work of many developers embedding

valuable mission critical functionalities. These systems

have thus become the major working resources of the

organizations but lack the capacity to adopt to the

advanced hardware computation domains. Hence it is

difficult for the organizations to disown these legacy

systems or to maintain them. Thus a framework is

required for bridging the gap between the advanced

computation systems and the legacy systems. This paper

proposes a methodology for abstraction of

functionalities from the legacy ‘C’ program using the

technique of program slicing.

Keywords: Reengineering; Legacy Software System;

Functionality; Program Slicing; Functional

dependency; Computation Systems

I. INTRODUCTION

Legacy software system is the computing software

system using programming language and also running

application programs on a hardware domain, which are

obsolete and restrict the systems from communicating with

the current technologies. The legacy systems thus do not

have the efficiency to allow for growth. Further, the legacy

system can cause many problems, such as very high

maintenance costs, they work with technologies that

prevents integration between legacy and other systems and

limited security. All these problems become more

prominent, than the convenience of continuing the use of

legacy systems.

But these legacy systems remain in use only because of

their reliability, i.e. the systems continue to meet the needs

they were earlier designed for. Hence it becomes difficult

for organizations to abandon these legacy systems, which

are required by the organizations to remain in business.

Enormous amount of such legacy software systems is

prevailing in the software industries. Preserving these

legacy systems may be by choice or necessity for the

organizations as many of them are dependent on these for

the execution of their mission critical application. Major

reason for the organizations to still continue with legacy

system is that it is steadily entrenched in company

operations embedding decisive functionalities, and also the

insight that, these system embodies a significant

investment, and would be expensive to replace, further any

change or enhancement can be expensive, time consuming,

difficult to operate. But it is also required to ensure that

mission critical legacy systems do become a major risk

within the organization with the technology getting old,

requiring specialized knowledge & skills to maintain them.

It is therefore difficult for the legacy software systems to

support increased throughput and efficient capacity and

thus the growth of the company. As the industry grows, it

demands the adaption to changing technology. Thus with

the industry evolving constantly, the software must keep

up with the advancing hardware computational

technology, else the industry will have to settle operational

business to the legacy system, slowly reducing the ability

to growth.

The Computing hardware on the other hand is fast

developing, on one end there are high performing single

core processors with very high processing capabilities with

increased transistor density. But at the same time this

industry is facing serious problems due to the inability of

the processors to scale.

The processor manufactures are also looking to

increase the processing capabilities with multicore

architectures and parallel programming models. In contrast

to single core processing, the multiprocessing or multicore

processing, prevent dependability on the software

developer and controls task allocation using distributed

approach for improved performance gains. With this

insight into both legacy systems and advanced

computation systems, it is required for the software

developers to develop a framework which is capable of

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/OpenAccess
http://pices-journal.com/ojs/index.php/pices/article/view/246
http://creativecommons.org/licenses/by/4.0/

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal
ISSN: 2566-932X, Vol. 4, Issue 4, July 2020

Part of the Proceedings of the 1st All India Paper writing Competition on Emerging Research - PaCER 2020

© PiCES Journal / Publisher: WorldServe Online 2020. www.pices-journal.com

 This work is licensed under a Creative Commons Attribution 4.0 International License.
Permissions beyond the scope of this license may be available at PiCES Journal Open Access Policy

Visit here to cite/refer this article 40

execution of the legacy system on the present advanced

computation systems.

This process of adaptation of the legacy system to

advanced computation is significant and introduces new

challenges. The legacy systems are operationally reliable

but have through years failed to keep in pace with the

performance of the advancing computation hardware. The

continuous development on these systems to fulfil the then

requirements over years and negligence in maintenance of

these systems has complicated their readability and

understandability. Hence, to evolve the legacy system, the

major task of the software developer is to develop a

framework for the reengineering of the legacy system for

abstraction of functionality from the system and extract the

functionally independent modules.

A methodology is required which reengineers the

legacy system by initially restructuring it, analyze the

legacy system to understand its behaviour and abstract the

functionality.

The paper proposes a work which is in continuation to

the earlier work on restructuring [4], wherein structuring

of the legacy system makes suitable changes to the

program without changing the underlying functionality,

then abstraction of Information Flow Table; [5], this table

is an informative representation of both the control flow

and data flow information along the program. Further the

information flow table is used to identify the functional

dependency existing along the execution path of the

program amongst the control structures and the data within

these structures. The identification and abstraction of

functional dependency relative to control and data

dependency enables the extraction of relevant sets of

attributes [6], which are used as criterion for recognizing

the particular nodes in the program where parallelism can

be induced and functional modules extracted using the

technique of program slicing.

Thus the paper proposes a reengineering technique

which not only works to make a legacy program

compatible to execute on advanced single core platform

but also is capable of addressing parallelization for

execution of the sequentially executing program on

multicore processors.

The work in this paper begins with considering of the

relevant attribute sets as a criterion for identifying of those

particular break points in the program which can be

parallelized for execution on multi cores. Program slicing

is performed at these break points using the relevant

attribute set as the slicing criterion to abstract out the

independently executing functional modules from the

legacy program, which are applied for parallel execution

onto multicore platforms.

II. LITERATURE SURVEY

Many researchers have worked on reengineering of

legacy systems. Paper [1], the author has worked towards

reengineering of legacy C programming system and has

developed a tool for abstraction of control flow table and

data flow graph from the input legacy ‘C’ program. Paper

[4], work is done on restructuring of the legacy c program.

A software tool is developed to read a input program and

restructure the legacy c program by elimination or

replacement of entities changing the structured sequence

of program execution by an appropriate conditional or loop

structure, at the very level of abstraction and in immediacy

to the machine understanding. Paper [5], a tool is proposed

here for the analysis of control flow and data flow of the

legacy program and construct the Information Flow Table.

Paper [6], work is done here to realize functional

dependency within the control and data structures, and

using the functional dependency relevant attribute sets are

deduced which are used to define the appropriate nodes for

modularization of the functions embedded in the legacy

program. Paper [8] combines findings from selected

literature identifying challenges encountered in the process

of parallelizing sequential codebases to finally evolve the

sequential code into parallel format. [9] Presents a dynamic

approach for automatically identifying potential

parallelism in sequential programs. It is based on the notion

of computational units, which are small sections of code

following the read-compute-write pattern that can form the

atoms of concurrent scheduling. [7] discuss the relation

between program slicing and data dependencies. Slicing is

defined in the work and calculated parametrically on the

chosen notion of dependency. [10] This work proposes an

elegant way of achieving such a goal by targeting a task-

based runtime which manages execution using a task

dependency graph .A translator is developed for sequential

JAVA code which generates a highly parallel version of

the same program. This work in paper [12] presents a

survey through different aspects considered over the time

to detect and extract parallelism from sequential programs,

and that could present any degree of applicability in

modern multi-core embedded systems.

III. PROPOSED METHODOLOGY

The research work proposed and worked with in this

paper is a continuation of the works of [6]. The research

work begins with an objective of Reengineering of Legacy

‘C’ programming system by development of a framework

which can be used for execution of the single core

sequentially executing legacy ‘C’ program on multicore

processor.

The work is carried out in phases with the output of

every phase considered as the input to the next phase. The

following describes the phases of work carried out so far

and the ongoing work.

A. Phase 1

a) Restructuring of Legacy C program

The input legacy ‘C’ program is initially restructured

to remove comment lines, blank lines, organize the

program by converting multi-statement lines into single

statements, and remove the unconditional goto statements

with appropriate replacements to structure the program

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/OpenAccess
http://pices-journal.com/ojs/index.php/pices/article/view/246
http://creativecommons.org/licenses/by/4.0/

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal
ISSN: 2566-932X, Vol. 4, Issue 4, July 2020

Part of the Proceedings of the 1st All India Paper writing Competition on Emerging Research - PaCER 2020

© PiCES Journal / Publisher: WorldServe Online 2020. www.pices-journal.com

 This work is licensed under a Creative Commons Attribution 4.0 International License.
Permissions beyond the scope of this license may be available at PiCES Journal Open Access Policy

Visit here to cite/refer this article 41

flow. Finally line numbers are given to the structured

program which is required for program analysis.[4]

b) Analysis of the Restructured Program

The Restructured Program is analyzed for the

abstraction of the control flow and data flow information.

The information obtained during the analysis is listed as a

table of control constructs and variables [5]

B. Phase 2

a) The Information Flow Table (IFT)

The Information flow table, tabulates the flow

sequence of control and data information along the

program.[5]

b) Control Flow Information

Control flow information is extracted from the program

and tabulated. The control flow table mainly involves the

control constructs their start and end points and

information relative to the transition.[1][5]

c) Data Flow Information

Data flows along the program in conjunction with the

control constructs and the data is always in conjunction

with the control flow. This flow of data along the program

structure exhibits the behavior of the program with its flow.

Accordingly the data variables are identified as Defined

Variables and Referenced Variables [1]. The process

begins in the control flow order where the information

about the variables either defined or referenced or both is

written along the line.[5]

C. Phase 3

a) Abstraction of Functional Dependency from the

Information Flow Table.

Information embedded within a legacy software system

represents the complete structure of the code design, data

flow along the program and behavior of the program and

control constructs with respect to the data at that instant.

The program and thus the legacy software system

embed information which provides scope for the

developers in the development of a framework for the

legacy program execution in association with the advanced

computation systems example multicore processing

systems. [5]

b) Realization of the slicing criteria from the functional

dependency table

The functional dependency table tabulates the control

constructs and the type of dependency they share with each

other. This table is generated with the information flow

table and the restructured program as references.

By analyzing the information tabulated, relations are

realized which includes the line number, respective control

construct, data, the variable type and their

interdependency.

The relation thus deduced is used as a slicing criterion

for abstracting out the functionality embedded with the

legacy program in the form of independently executing

functional modules.[6]

D. Phase 4

a) Abstraction of functional modules using program

slicing.

The slicing criterion deduced in the above phase is used

for the abstraction of the functional modules.

The relations define the appropriate line number from

where the slicing should begin; the control construct at

which point node is identified for slicing, the data and its

dependency is used to identify the scope of the module

which is functionally independent for computation. Thus

using the deduced relation, the embedded functionality can

be abstracted form the legacy ‘C’ program. (Ref: case

study)

b) Applying Program slicing technique for abstraction of

functionality.

The static program slicing technique is applied for

slicing out the functionally independent modules. The

static program slicing technique is used, as the data in the

flow considered is not real time and execution of the legacy

‘c program is neither required nor considered. The input

legacy program is an executable program and is its

working modules that can be executed independently are

extracted out using the realized criteria. After identifying

the nodes and slicing is performed to extract out the

functional module.

IV. CASE STUDY

A. Restructured Input Program

1 void main()

2 {

3 int a,b,i,n,sum,add,func;

4 printf("Enter n value");

5 scanf("%d", &n);

6 clrscr();

7 if(n>0)

8 {

9 for(i=0; i<n; i++)

10 {

11 printf("Enter two nos");

12 scanf("%d%d", &a, &b);

13 sum=a+b;

14 printf("Sumof two nos = %d", sum);

15 }

16 for(i=0; i<n; i++)

17 {

18 printf("Enter two nos a,b");

19 scanf("%d%d", &a, &b);

20 add=a+b;

21 printf("Sum of two nos=%d", add);

22 avg=add/2;

23 }

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/OpenAccess
http://pices-journal.com/ojs/index.php/pices/article/view/246
http://creativecommons.org/licenses/by/4.0/

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal
ISSN: 2566-932X, Vol. 4, Issue 4, July 2020

Part of the Proceedings of the 1st All India Paper writing Competition on Emerging Research - PaCER 2020

© PiCES Journal / Publisher: WorldServe Online 2020. www.pices-journal.com

 This work is licensed under a Creative Commons Attribution 4.0 International License.
Permissions beyond the scope of this license may be available at PiCES Journal Open Access Policy

Visit here to cite/refer this article 42

Control

structure at the

entry point

Control

structure

Conditional

variables

Control constructs

influenced by the entry

point control structure

statements

influenced by the

control construct

Data

Variables

Vcond VIte

7 if n 9,16,24, 31 - -

9 for n i - 11,12,13,14 a,b, sum

16 for n i - 18,19,20,21, 22 a,b, add, avg

24 for n i - 26,27,28,29 a, b, f

31 for n i - 33,34,35,36 a, b, f

39 else - 41 -

Table 1. Control and Data dependency Table

Inter Dependency Explicit Intra dependency Implicit Intra dependency Data Dependency

C7  C39 C7  C9, C16, C24, C31 C9  S11 , S12, S13 , S14 Sum  a , b

 C16  S18 ,S19, S20, S21 , S22 Add  a , b

Avg  Add

 C24  S26 , S27 , S28 , S29 f  a, b

 C31  S33 , S34 , S35 , S36 f  a, b

 C39 C39  S34 -

Table 2. Functional Dependency Table

24 for(i=0; i<n; i++)

25 {

26 printf("Enter two nos");

27 scanf("%d%d", &a, &b);

28 f=a-b;

29 printf("Diffof two nos=%d", func);

30 }

31 for(i=0; i<n; i++)

32 {

33 printf("Enter two nos");

34 scanf("%d%d", &a, &b);

35 f=a%b;

36 printf("Modof two nos=%d", func);

37 }

38 }

39 else

40 {

41 printf("No is not valid");

42 }

43 }

Tables 1 and 2 showcase generation of Functional

Dependency Table.

The Functional dependency (FD) relations from this

table are realized as shown below

C7  C9, C16, C24, C31

C9  S11, S12, S14, S15

Sum  a, b

Similar to the above relations, other FD relations in the

program may be used to realize the relations as criterion,

as below

Criterion 1: (C7, C9, Sum, a, b).

Criterion 2: (C7, C16, Avg, a, b)

Criterion 3: (C7, C24, f, a, b)

Criterion 4: (C7, C31, f, a, b)

Criterion 2: (C39, -, -, -, -)

Thus the slicing criterion for any module can be

deduced as,

Ex: C7  C9, C16, C24, C31

 C9  S11, S12, S14, S15

 Sum  a, b

Slicing criterion:

< S, V> = < (1:6, C7 (C9)), (a, b, sum)>

B. Results and Result Analysis

a) Control and Data dependency Table (Table 1)

The Table 1 is an abstraction of the complete

behavioral, data flow and structural components of the

program. It depicts the transition sequence of the control

structures, dependency between them, binding structure

and also the data flow through the constructs.

b) Functional Dependency Table (Table 2)

The table tabulates the complete sequence of the

dependency existing between the control constructs and

also data.

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/OpenAccess
http://pices-journal.com/ojs/index.php/pices/article/view/246
http://creativecommons.org/licenses/by/4.0/

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal
ISSN: 2566-932X, Vol. 4, Issue 4, July 2020

Part of the Proceedings of the 1st All India Paper writing Competition on Emerging Research - PaCER 2020

© PiCES Journal / Publisher: WorldServe Online 2020. www.pices-journal.com

 This work is licensed under a Creative Commons Attribution 4.0 International License.
Permissions beyond the scope of this license may be available at PiCES Journal Open Access Policy

Visit here to cite/refer this article 43

c) Analysis of Tables 1 and 2

The Table 1 begins with tabulation of the control

structure at the entry point, followed by the conditional

variable. This variable helps to trace whether the condition

defined by the variable is influencing the execution of

another construct within the scope of function Main (). If

it influences any construct then the former and the latter

exhibit interdependency. Further IFT (Information Flow

Table) [5], is scanned to find any constructs executing

within the entry point construct and if found they are

tabulated as constructs influenced by the former. If the

inner constructs also have constructs within, the process is

repeated by considering this as new entry point. This

exhibits intra control dependency. Simultaneously the data

obtained along the control flow are also tabulated. The data

is recorded at all the levels of program execution which

may record redundant entities. This redundancy is

minimized by establishing functional dependency.

In the table 2 Notation ‘C’ stands for control construct

and ‘S’ stands for Statements affected by the control

construct.

The control constructs in line 9,16,24,31 show

dependency on the structure in line 7.This is the intra

dependency

 C7  C9, C16, C24, C31, all these control constructs

i.e,. C9, C16, C24, C31 are controls, intra dependent on

C7. Further all these constructs dependent on C7 are

scanned again to find more transitions, if transitions found

then they are shown in the same way else if the loop is

independent, then the statements depending on this

construct are shown as ex., C9  S11, S12, S14, S15. Finally

the data dependency is abstracted as shown in the Table 2.

The Functional dependency (FD) relations from this

table are realized for example as shown below

C7  C9, C16, C24, C31

C9  S11, S12, S14, S15

Sum  a, b

The above FD relations may be used to deduce the

criterion.

This criterion given as an input for the slicing algorithm

abstracts the functionality associated with the functional

dependency relation, thus discovering the independently

executing functional modules and inducing parallelization

in the sequentially executing restructured input program.

Criterion 1: (C7, C9, Sum, a, b).

< (1:6, C7 (C9)), (a, b, sum)>

Input: Restructured Program

Output: Sliced functional module

1 void main ()

2 {

3 int a, b, i, n, sum, add, func;

4 printf("Enter n value");

5 scanf("%d", &n);

6 clrscr();

7 if(n>0)

8 {

9 for(i=0; i<n; i++)

10 {

11 printf("Enter two nos");

12 scanf("%d%d", &a, &b);

13 sum=a+b;

14 printf("Sum of two nos = %d", sum);

15 }

V. CONCLUSION:

In this paper a methodology is proposed for the

abstraction of functionality or independently executing

functional modules form a sequentially executing legacy

‘C’ program. In the earlier work carried out, work was

done to generate the Information Flow Table which gave

an analysis of the control flow and the data flow of the

input program. With this as reference, the functional

dependency table is developed, which defines

transparently the dependency status with respect to all the

control constructs, their inter dependency with each other

and their dependency with the data and its flow along the

program. This table is then analyzed to realize the slicing

criteria, using which the independently executing

functional modules are abstracted. Thus abstraction of

functionality using Program Slicing is achieved.

REFERENCES

[1] Rajkumar N. Kulkarni, “Reengineering of the legacy ‘C’ systems,

Ph.D. thesis, 2011.

[2] Chris Birchall, “Re-Engineering Legacy Software”, Manning

Publications, 2016

[3] Phillip A.Hausier, Mark G. Pleszkoch, Richard C.Linger and Alan

R. Herner, “Using Function Abstraction to Understand Program

Behaviour, IEEE, 1990.

[4] Dr Rajkumar N. Kulkarni, Padmapriya Patil, “Restructuring of

Legacy ‘C’ Program to be Amenable for Multicore Architecture”,

ICRTEST Elsevier energy procedia proceedings, Oct- 2016.

[5] Dr Rajkumar N. Kulkarni, Padmapriya Patil, “Abstraction of

Information Flow Table from a Restructured Legacy ‘C’ program

to be amenable for Multicore Architecture” LNCS Springer 2018

[6] Dr R.N Kulkarni, Padmapriya Patil ,“Abstraction of Functional

Dependency and Information Flow from a Restructured Legacy

‘C’ program for Parallelization” IEEE digital Library-2018.

[7] Isabella Mastroeni, Damiano Zanardini, “Data Dependencies and
Program Slicing: from Syntax to Abstract Semantics”, PEPM’08,

ACM, 2008.

[8] Anne Meade, Jim Buckley, J. J. Collins, “Challenges of Evolving

Sequential to Parallel Code: An Exploratory Review”, ACM, 2011.

[9] Zhen Li, Ali Jannesari, and Felix Wolf, “Discovery of Potential

Parallelism in Sequential Programs”, 2014

[10] Joao Rafael, Ivo Correia, Alcides Fonseca, “Dependency-Based

Automatic Parallelization of Java Applications”, LNCS 8806,

Springer, 2014.

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/OpenAccess
http://pices-journal.com/ojs/index.php/pices/article/view/246
http://creativecommons.org/licenses/by/4.0/

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal
ISSN: 2566-932X, Vol. 4, Issue 4, July 2020

Part of the Proceedings of the 1st All India Paper writing Competition on Emerging Research - PaCER 2020

© PiCES Journal / Publisher: WorldServe Online 2020. www.pices-journal.com

 This work is licensed under a Creative Commons Attribution 4.0 International License.
Permissions beyond the scope of this license may be available at PiCES Journal Open Access Policy

Visit here to cite/refer this article 44

[11] S. Rul, H. Vandierendonck, and K. De Bosschere, “Function level

parallelism driven by data dependencies,” SIGARCH Comput.

Archit. News, vol. 35, no. 1, pp. 55–62, Mar. 2007.

[12] Miguel Angel Aguilar , Juan Fernando Eusse, Projjol Ray , Rainer

Leupers , Gerd Ascheid , Weihua Sheng , Prashant Sharma ,”
Parallelism Extraction in Embedded Software for Android

Devices”,2015 IEEE.

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/OpenAccess
http://pices-journal.com/ojs/index.php/pices/article/view/246
http://creativecommons.org/licenses/by/4.0/

