
Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 3, Issue 3, June 2019

© ΠCES 2019. All right reserved.

Publisher: PiCES Journal, www.pices-journal.com 30

LInteger-An Approach to Store and Manipulate

Large Integers

Baswaraju Swathi

Information Science and Engineering, New Horizon College of Engineering, Bangalore, baswarajuswathi@gmail.com

Abstract: Arithmetic operations are elementary in

computing and programming. Infinite precision

arithmetic indicates the calculations that are performed

on numbers whose digits of accuracy are inclined only

by the existing memory of the host system. This

converse with the earlier fixed-precision arithmetic

originated in arithmetic logic unit hardware, usually

offers amid 8 and 64 bits of precision. In computer

programming, an integer overflow occurs if an

arithmetic operation attempts to generate a numeric

value that is beyond the range that can be indicated

with a given number of digits larger than the maximum

or lower than the minimum representable value.

Generally the outcome of an overflow is the least

significant digits of the result are stored, the result is

said to wrap around the maximum. An overflow

condition may give results leading to unintentional

behaviour. In particular, if the possibility has not been

predicted, overflows can concile a program's reliability

and security. In this paper we build a system that

permits storage and manipulation of large integer

values. Applications may vary from storing a 100! to a

large bit customer identification number.

Keywords: Infinite-precision; fixed-precision;

arithmetic; overflow; wrap

I. INTRODUCTION

Emerging computer applications necessitate the
processing of outsized numbers, larger than what a CPU
can hold. The dominant PCs can merely operate numbers
not longer than 32 bits or 64 bits [1]. This is because of
the size the registers and the data-path inside the CPU. As
a consequence, performing arithmetic operations such as
subtraction on big-integer numbers is to some extend
limited. Various algorithms considered in an attempt to
resolve this problem that operate on big-integer numbers
by converting into a binary representation later
performing bitwise operations on single bits. These
algorithms are of complexity O(n)[3] where n is the total
number of bits in each one operand. Arithmetic
operations are elementary in computing and
programming. Infinite precision arithmetic indicates the
calculations that are performed on numbers whose digits
of accuracy are inclined only by the existing memory of
the host system.[2]

Fig 1. Factorial numbers vs. Reach of Computer

integers

The above Figure 1 shows the size of factorial
numbers in comparison to the usual primitive data-type
limit of computers. Programming languages have built-in
to maintain large numbers, and few have libraries
accessible for arbitrary-precision integer and floating-
point math. Relatively to store values as a fixed number
of binary bits related to the size of the processor register,
these implementations usually use variable-length arrays
[4]of digits. Infinite precision is used in applications
where the speed of arithmetic is not a restrictive
parameter, where exact results with very large numbers
are required.

In C++, the longest primitive data-type for most
machines, which are 64-bit, is 8 bytes or 64 bits. The
largest unsigned 64 bit integer is 2

64
– 1, which is a 20

digit number (1.84 x 10
20

). If you need to deal with
numbers that have a value much greater than, there is no
data-type available in C++ that can handle values very
large. For example, the factorial of 100 is a 158 digit
number (9.332 x 10

157
), which is much larger than any

data-type available in C++ can handle. To overcome this
issue, a class LInteger is created, which allows us to deal
with large numbers. LInteger is a class used for
mathematical operation which involves very big integer
calculations that are outside the limit of all available
primitive data types. The desired large integer can be
stored. There is no theoretical limit on the upper bound of
the range because memory is allocated dynamically but
practically, the physical memory available is the only
limit.

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 3, Issue 3, June 2019

© ΠCES 2019. All right reserved.

Publisher: PiCES Journal, www.pices-journal.com 31

II. PROPOSED METHODOLOGY

The class LInteger serves as a user-defined data-type
in C++ that can handle large integers efficiently with an
easy-to-use syntax. The LInteger class has 2 data
members. A pointer called „val‟ which is a pointer that
points to type long int and the other is „length‟ which is of
type long. The data member „val‟ is used to dynamically
allocate an array of long integers which are used to store
the digits and the the data member „length‟ specifies the
length of array pointed to by „val‟. The LInteger class
contains constructors that allow it to be initialized by
giving the value as an integer, another LInteger object
which has some value or an integer string. This allows the
LInteger to be initialized to a number however large the
user desires. It contains functions to add and subtract
LInteger objects with another LInteger object, an integer
or a string to give a signed result in the form of a LInteger
object and is overloaded by the + and - operator so that it
becomes very easy to use. It also has functions to
multiply a LInteger object with another LInteger object,
an integer or a string representing an integer to give the
signed result in terms of LInteger objects and these
functions are overloaded by the * operator so that it
becomes easy to use them in any program.

A. Modules

 mod(long a, long b) – A user-defined function that
returns absolute value of a modulo absolute value of
b. In this program the parameter, long b, is always 10
and the parameter long a can be any long integer.
Used to separate the one‟s digit from the remaining
number. The return-type is long int.

 digitCount(long n) – A user-defined function that
takes a long integer n and returns the number of digits
in n. The return-type is n.

 LInteger() – A non-parameterized constructor that sets
the value of data members val to NULL and length to
0.

 LInteger(long n) – A parameterized constructor that
stores the value of long integer n in a LInteger object.
The data member length will be initialized to
digitCount(n) and val will point to an array containing
the digits of n.

 LInteger(string s) – A parameterized constructor that
takes a string s, which represents an integer number of
any length and initializes the LInteger object with that
value.

 LInteger(constLInteger&num) – A parameterized
constructor that takes another reference of another
LInteger object as an argument. This acts as a copy
constructor.

 display() – A user-defined member function that
displays the value stored in a LInteger object. The
return-type is void.

 operator = (string s) – Operator overloading function
that overloads „=‟ operator with a string as an
argument. This is used for re-initialization of a

LInteger object using a string. It basically calls the
constructor that initializes LInteger object with a
string. Return-type is void.

 operator = (long n) – Operator overloading functions
that overloads „=‟ operator with a long integer as an
argument. This is used for re-initialization of a
LInteger object using an integer. It basically calls the
constructor that initializes LInteger object with a long
int. Return-type is void.

 operator>> (istream&din, LInteger&a) – Operator
overloading function which is a friend of class
LInteger that takes the reference variable din of an
istream object and a reference variable a of LInteger
object. This is used to take inputs for LInteger using
cin with the regular syntax. Return-type is reference
variable of istream object. This is done so that
cascading can be achieved with cin.

 operator<< (ostream&dout, LInteger&a) – Operator
overloading function which is a friend of class
LInteger that takes the reference variable dout of an
ostream object and a reference variable a of LInteger
object. This is used to output the value of LInteger
object using cout with the regular syntax. Return-type
is reference variable of ostream object. This is done so
that cascading can be achieved with cout.

 operator + (LInteger a, LInteger b) – Operator
overloading function which is a friend of class
LInteger. It takes 2 LInteger objects, which are the 2
operands, as arguments and calculates and returns the
sum of the two arguments a and b. The return-type is
LInteger.

 operator+(LInteger&a, long b) – Operator
overloading function which is a friend of class
LInteger. It takes a LInteger reference variable and a
long int as arguments. It adds a LIntegera and a long
integer b. The return-type is LInteger.

 operator+ (LInteger&a, string b) – Operator
overloading function which is a friend of class
LInteger. It takes a LInteger reference variable and a
string representing an integer value as arguments. It
returns the sum of value stored in LIntegera and string
b. The return-type is LInteger.

 operator - (LInteger a, LInteger b) – Operator
overloading function which is a friend of class
LInteger. It takes 2 LInteger objects, which are the 2
operands, as arguments and calculates and returns the
difference of the two arguments a and b. The return-
type is LInteger.

 operator - (LInteger&a, long b) – Operator
overloading function which is a friend of class
LInteger. It takes a LInteger reference variable and a
long int as arguments. It subtracts LIntegera and a
long integer b. The return-type is LInteger.

 operator - (LInteger&a, string b) – Operator
overloading function which is a friend of class
LInteger. It takes a LInteger reference variable and a

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 3, Issue 3, June 2019

© ΠCES 2019. All right reserved.

Publisher: PiCES Journal, www.pices-journal.com 32

string representing an integer value as arguments. It
returns the diffrence of value stored in LIntegera and
string b. The return-type is LInteger.

 operator*(LInteger a, LInteger b) - Operator
overloading function which is a friend of class
LInteger. It takes 2 LInteger objects, which are the 2
operands, as arguments and calculates and returns the
product of the two arguments a and b. The return-type
is LInteger.

 operator* (LInteger&a, long b) - Operator
overloading function which is a friend of class
LInteger. It takes a LInteger reference variable and a
long int as arguments. It multiplies a LInteger a with a
long integer b. The return-type is LInteger.

 operator* (LInteger&a, string b) - Operator
overloading function which is a friend of class
LInteger. It takes a LInteger reference variable and a
string representing an integer value as arguments. It
returns the product of value stored in LInteger a and
string b. The return-type is LInteger.

III. IMPLEMENTATION

Fig 2. Flow chart for mod function (mod(long a,

longb))

Figure 2 shows the flow chart for the mod function. It
takes two arguments a and b of type long int. In this
program b is always 10. It returns the negative of absolute
value of a modulo b. If a is negative, it negates a and its
modulo with b is returned as result. If a is positive, then
the a modulo b is returned as result. The result is also a
long int type.

Figure 3 shows the digitCount function. It takes an
argument n of type long int and returns the number of
decimal digits in the number n. It initially initializes a
variable count to 1. Another variable tens is initialized
with a value of 10. After the while loop ends, count will
have the number of digits in n.

Figure 4 shows the flow chart of constructor
LInteger(long n). At first, it sets the value of the data
member length to the number of digits in n using
digitCount() function. Now val points to an array with
number of elements same as length and those elements
are allocated dynamically. Now each digit is assigned to
each location in the array val.

Figure 5 shows the flow chart for the constructor
LInteger(string s). The string s represents an integer

number as a string. If the integer is negative, the first
character will be „-„, that is, s[0] will be „-„. The data
member length is initialized as equal to the length of the
string s. if s[0] is „-„, then the length is decremented by 1.
The elements are stored as digits in the dynamically
allocated array val. Now Another loop runs from last
position of val array till 0, decrementing the value of
length if the array element is 0. This is to remove the
leading zeroes. For example, if user enters “000000001”,
it‟s same as 1.

Fig 3. Flow chart for digitCount function

(digitCount(long n))

Fig 4. Flow chart for constructor LInteger(long n)

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 3, Issue 3, June 2019

© ΠCES 2019. All right reserved.

Publisher: PiCES Journal, www.pices-journal.com 33

Fig 5. Flow chart for LInteger(string s)

Fig 6. Flow chart of function operator <<

(ostream&dout, LInteger a)

The above Figure 6 shows the flow chart of function
that overloads operator „<<‟ with ostream object
reference and a LInteger object reference as its
arguments. In LInteger object, if the value to be stored is
negative, all the elements in val are negative. So to print
the values correctly, at first the most significant digit, that
is a.val[a.length – 1], is printed as it is. Then, the absolute

values of all the other digits are printed. In this function, a
variable sign is used to print the absolute. If the number is
negative, then sign is initialized with -1. If the number is
negative, sign will be initialized with 1. To get absolute
value of any number, it is multiplied with sign. The
function then returns the ostream object to allow
cascading of stream insertion operator (<<) with cout for
ease of use.

Fig 7. Flow chart of function operator + (LInteger a,

LInteger b)

The above Figure 7 shows the flow chart of function
that overloads opertator„+‟ and takes LIntegera and
LInteger b as arguments. Another LInteger object called
sum is created with length 1 more than the length of
number which is bigger between a and b, that is,
sum.length = max(a.length, b.length) + 1. Now 2
variables o1 and o2 store the digits of a and b at index i as
it iterates through sum.length times. Now, o1 and o2 are
added and the result module 10 is stored at index i of
sum.val and result divided by 10 is taken as carry. The
result which is stored in LInteger sum is returned.
Addition with LInteger has a time complexity of O(n)
where n is the number of digits of the greater operand.

Figure 8 shows the function that overloads „*‟
operator to multiply 2 large numbers by taking LIntegera
andLInteger b as arguments. An object of LInteger„s‟ is

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 3, Issue 3, June 2019

© ΠCES 2019. All right reserved.

Publisher: PiCES Journal, www.pices-journal.com 34

declared which is used to store the result. The length of s
is the sum of lengths of the operands, a and b, that is,
s.length= a.length + b.length. The method of
multiplication used here is tradition long multiplication
method where every digit of the multiplier is multiplied
with every digit of multiplicand. The result is stored in
LInteger s which is returned. The time complexity of this
function is O(nm) where n is length of LInteger a and m
is length of LInteger b. For multiplication of 2 LInteger
numbers of same length, the time complexity is O(n

2
).

Fig 8. Flow chart of function operator * (LInteger a,

LInteger b)

Figure 9 shows the flow chart of the function that
overloads „*‟ operator and takes one LInteger object and
one long int object. First, a LInteger object s is declared.
The length of s is set to the sum of length of LIntegera
and length of long int b which are the two operands. The
long int b is multiplied with every digit of LIntegera and
the result modulo 10 is stored in corresponding indices of
s.val and the carry is set to result divided by 10. After
multiplying the last digit with the multiplier (long int b),
there can be a multiple digit value in the carry. Store each
digit after the already existing most significant digit one
by one. This is faster than the function in fig 3.7 as this
performs multiplication in O(n) time where n is the
number of digits in LInteger a.

Fig9. Flow chart for function operator * (LInteger
a, long int b)

IV. RESULTS AND DISCUSSSION

The Table I gives a brief description of all the variable
names with their respective data types.

A. Table and Explanation

The Table1 shows all the variables used in the source
code along with their description and their respective data
types.

Variable Data-type Description

Length long Data member of LInteger which

stores the number of decimal digits

of the given number

val long* Data member of LInteger which is

used to allocate an array to store the

digits dynamically

a,b LInteger Operands in LInteger object form

for addition, subtraction or

multiplication.

b long Second operand for addition,

subtraction or multiplication of type

long int

b string Second operand for addition,

subtraction or multiplication of type

string

j,j long Loop iterators

sum, s LInteger LInteger objects which store the

result to be returned by addition,

subtraction or multiplication

operator

count int Variable that stores the number of

digits in a long int. This is used in

function DigitCount()

carry long Variable used to store carry in

intermediate operations of addition,

subtraction and multiplication

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 3, Issue 3, June 2019

© ΠCES 2019. All right reserved.

Publisher: PiCES Journal, www.pices-journal.com 35

sign short int Variable used to store the sign of a

number in LInteger. Its value is -1

for negative and +1 for positive

fact LInteger LInteger object used to calculate the

factorial of num

num int Variable that stores the number

whose factorial is to be calculated

tens long Variable that is used to count the

number of digits in digitCount()

function

Table 1. Table of all variables and description used in code

The LInteger class used to calculate the factorial of a
number. Factorial is a mathematical function that grows
very large when the input increases. For example, 10
factorial is 362800, a 6 digit number. The factorial of 100
contains 158 digits which is number much larger than any
built in data type in c++. The Figure 10 shows the output
of the program that calculates factorial when input is 10
using LInteger. Figure 11 shows the output when the
input number for factorial is 100.

Fig 9. 10! Using LInteger

Fig 10. 100! Using LInteger

The multiplication function that multiplies 2 LInteger
objects of same size has a time complexity of O(n

2
).

There is an algorithm of multiplication using FFT(Fast
fourier transform) that performs multiplication with time
complexity O(nlogn)[4].

 In LInteger, the array „val‟ stores one digit in one
location. This is a waste of space and also for
numbers that have many digits, it also takes more
time to perform the calculations. It‟s possible to
store more than 1 digit in one location of the array to
save space as well as increase the speed of the

calculations. For example, storing 5 digits in one
location of the array uses only 1/5

th
the space as the

current program and the program will also run 5
times faster(Time complexity remains the same)[5].

 Other operators like division, modulo, bitwise
operators, relational operators, shorthand assignment
operators and increment and decrement operators
can also be implemented

V. CONCLUSION

LInteger is very useful for calculations that deal with
very large numbers. Factorial is one such example, where
the factorial of numbers like 100 itself is a 158 digit
number which far exceeds the limit of any primitive data-
type in C++. There is no limit to how large a number
represented by LInteger can be since the memory is
dynamically allocated. But if the numbers the user is
dealing with is under small and under the range of
primitive data-types, then it is strongly recommended to
use primitive data-types as they are considerably faster
than LInteger. LInteger is useful if speed and time is not
much of a concern as long as the result is given.

REFERENCES

[1] Youssef Bassil, Aziz Barbar ,”Sequential & Parallel Algorithms
for Big-Integer Numbers Subtraction” , Global Journal of

Computer Science and Technology Vol. 9 Issue 5 (Ver 2.0),

January 2010.

[2] AP Computer Science, THE LARGE INTEGER CASE STUDY
IN C++.

[3] Patrick Tan, Koen Vyverman, “Ludicrously Large Numbers -
Using Arbitrary Precision Arithmetic in SAS,Applications”, SAS

Global Forum 2008 Applications Development.

[4] Sanjeev Gangwar1 , Prashant Kumar Yadav ,Parallel Algorithm
for Adding Long Integers, Jaunpur, India, ACEIT Conference

Proceeding 2016.

[5] Baswaraju Swathi, A Comparative Study and Analysis on the
Performance of the Algorithms, IJCSMC,Volume 5.

[6] https://www.cs.utexas.edu/~shmat/courses/cs361s/blexim.txt

[7] http://www.xatlantis.ch/index.php/education/zeus-framework/9-

big-integers

