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Abstract: One of the major challenges faced by 

hospitals are effectively managing patient queue to 

minimize patient wait delay and overcrowding. 

Unnecessary and annoying waits for long periods result 

in substantial human resource and time wastage and 

increase the frustration endured by patients. For each 

patient in the queue, the total treatment time of all the 

patients before him is the time that he must wait. It 

would be convenient and preferable if the patients 

could receive the most efficient treatment plan and 

know the predicted waiting time through a mobile 

application that updates in real time. Therefore, we 

propose a Patient Treatment Time Prediction (PTTP) 

algorithm to predict the waiting time for each treatment 

task for a patient. We use realistic patient data from 

various hospitals to obtain a patient treatment time 

model for each task. Based on this large-scale, realistic 

dataset, the treatment time for each patient in the 

current queue of each task is predicted. Based on the 

predicted waiting time, a Hospital Queuing-

Recommendation (HQR) system is developed. HQR 

calculates and predicts an efficient and convenient 

treatment plan recommended for the patient. Because 

of the large scale, realistic dataset and the requirement 

for real-time response, the PTTP  and HQR system 

mandate efficiency and low-latency response. 

Keywords: Apache spark; big data; cloud computing; 

hospital queuing recommendation; patient treatment 

time prediction. 

I. INTRODUCTION 

A. Motivation 

Currently, most hospitals are overcrowded and lack 
effective patient queue management. Patient queue 
management and wait time prediction form a challenging 
and complicated job because each patient might require 
different phases/ operations, such as a checkup, various 
tests, e.g., a sugar level or blood test, X-rays or a CT scan, 
minor surgeries, during treatment. We call each of these 
phases /operations as treatment tasks or tasks in this 
paper. Each treatment task can have varying time 
requirements for each patient, which makes time 
prediction and recommendation highly complicated. A 

patient is usually required to undergo examinations, 
inspections or tests (refereed as tasks) according to his 
condition. In such a case, more than one task might be 
required for each patient. Some of the tasksare 
independent, whereas others might have to wait for the 
completion of dependent tasks. 

Most patients must wait for unpredictable but long 
periods in queues, waiting for their turn to accomplish 
each treatment task.In this paper, we focus on helping 
patients complete their treatment tasks in a predictable 
time and helping hospitals schedule each treatment task 
queue and avoid overcrowded and ineffective queues. We 
use massive realistic data from various hospitals to 
develop a patient treatment time consumption model. The 
realistic patient data are analyzed carefully and rigorously 
based on important parameters, such as patient treatment 
start time, end time, patient age, and detail treatment 
content for each different task. We identify and calculate 
different waiting times for different patients based on 
their conditions and operations performed during 
treatment. The work on of the patient treatment and wait 
model is illustrated in Fig. 1. 

Fig. 1 illustrates three patients (Patient1, Patient2, and 
Patient3) and a set of treatment tasks required for each 
patient. Some tasks can be dependent on a previous one, 
e.g., surgery or bandage cannot be done before X-rays. 
Tasks { A; B; D} are required for Patient1, whereas task 
D must wait for the completion of B. Tasks {E; B; C; A} 
are required for Patient2, and tasks {D; E; C} are required 
for Patient3. Moreover, there are different numbers of 
patients waiting in the queue of each task, for example, 7 
patients in the queue of task A and 5 patients in the queue 
of task B. 

In this paper, a Patient Treatment Time Prediction 
(PTTP) model is trained based on hospitals' historical 
data. The waiting time of each treatment task is predicted 
by PTTP, which is the sum of all patients' waiting times 
in the current queue. Then, according to each patient's 
requested treatment tasks, a Hospital Queuing-
Recommendation (HQR) system recommends an efficient 
and convenient treatment plan with the least waiting time 
for the patient. 

The patient treatment time consumption of each 
patient in the waiting queue is estimated by the trained 
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Fig 1. Workflow of patient treatment and wait model 

PTTP model. The whole waiting time of each task at the 
current time can be predicted, such as {TA = 35(min); TB 
= 30(min); TC =70(min); TD =24(min); TE =87(min)}. 
Finally, the tasks of each patient are sorted in an 
ascending order according to the waiting time, except for 
the dependent tasks. A queuing recommendation is 
performed for each patient, such as the recommended 
queuing {B; D; A} for Patient1, {B; A; C; E} for 
Patient2, and {D; C; E} for Patient3. 

To complete all of the required treatment tasks in the 
shortest waiting time, the waiting time of each task is 
predicted in real-time. Because the waiting queue for each 
task updates, the queuing recommendation is recomputed 
in real-time. Therefore, each patient can be advised to 
complete his treatment activities in the most convenient 
way and with the shortest waiting time. 

B. Our Contribution 

 Our contributions in this paper can be summarized as 
follows. 

 A PTTP algorithm is proposed based on an improved 
Random Forest (RF) algorithm. The predicted waiting 
time of each  treatment task is obtained by the PTTP 
model, which is the sum of all patients' probabletreatment 
times in the current queue. An HQR system is proposed 
based on the predicted waiting time. A treatment 
recommendation with an efficient and convenient 
treatment plan and the leastwaiting time is recommended 
for each patient 

The PTTP algorithm and HQR system are parallelized 
on the Apache Spark cloud platform at the National 
Supercomputing Center in Changsha (NSCC) to achieve 

the aforementioned  goals.  Extensive  hospital  data are  
stored  in  the  Apache  HBase,  and  a  parallesolution is 
employed with the MapReduce and Resilient Distributed 
Datasets (RDD) programming model. 

The remainder of the paper is organized as follows. 
Section 2 reviews related work. Section 3 details a PTTP 
algorithm and an HQR system. The parallel 
implementation of the PTTP algorithm and HQR system 
on the Apache Spark cloud environment is detailed in 
Section 4. Experimental results and evaluations are 
presented in Section 5 with respect to the 
recommendation accuracy and performance. Finally, 
Section 6 concludes the paper with future work and 
directions. 

II. PATIENT TREATMENT TIME PREDICTION 

ALGORITHM  

To build the PTTP model based on patient and time 
characteristics, a PTTP algorithm is proposed. The PTTP 
model is based on an improved RF algorithm and is 
trained from the massive, complex, and noisy hospital 
treatment data. 

A. Problem Definition And Data Preprocessing  

a) Problem Definition 

Prediction based on analysis and processing of 
massive noisy patient data from various hospitals is a 
challenging task. Some of the major challenges are the 
following: 

1) Most of the data in hospitals are massive, 
unstructured, and high dimensional. Hospitals 
produce a huge amount of business data every day 
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that contain a great deal of information, such as 
patient information, medical activity information, 
time, treatment department, and detailed information 
of the treatment task. Moreover, because of the 
manual operation and various unexpected events 
during treatments, a large amount of incomplete or 
inconsistent data appears, such as a lack of patient 
gender and age data, time inconsistencies caused by 
the time zone settings of medical machines from 
different manufacturers, and treatment records with 
only a start time but no end time. 

2) The time consumption of the treatment tasks in each 
department might not lie in the same range, which 
can vary according to the content of tasks and 
various circumstances, different periods, and 
different conditions of patients. For example, in the 
case of a CT scan task, the time required for an old 
man is generally longer than that required for a 
young man. 

3) There are strict time requirements for hospital 
queuing management and recommendation. The 
speed of executing the PTTP model and HQR 
scheme is also critical. 

B. Data Preprocessing 

In the preprocessing phase, hospital treatment data 
from different treatment tasks are gathered. Substantial 
numbers of patients visit each hospital every day. Let S 
be a set of patients in a hospital, and a patient who has 
been registered and his information is represented by si. 
Assume that there are N patients in S: 

S={s1; s2; : : : ; sN}; 

where each patient si can have specific unchanged 
parameters, e.g., name, ID, gender, age, and address. 
Some of these parameters are useful to our analysis, 
whereas others are not. 

Each patient can visit multiple treatment tasks 
according to his health condition. Let X jsi be a set of 
treatment tasks for patient si during a specific visit: 

X|si={x1; x2; : : : ; xK}; 

where each treatment task record xi can consist of 
multiple information Y , e.g., task name, task location, 
department, start time, end time, doctor, and attending 
staff: 

Y|xi={y1; y2; : : : ; yM}; 

where yj is a feature variable of the record of 
treatment task xi. Here, for a single visit, we have a single 
record for patient name, age, gender, and multiple records 
for treatment tasks, as shown in Table1. 

The work on of the preprocessing task can be depicted 
by the following steps. 

a)  Gather Data From Different Treatment Tasks 

Depending on statistics, the number of patients in a 
medium sized hospital lies between 8,000 and 12,000 per 

day, and the number of remedial treatment data records is 
between 120,000 and 200,000. 

b) Choose The Same Dimensions Of The Data  

The hospital treatment data generated from different 
treatment tasks have different contents and formats as 
well as varying dimensions. To train the patient time 
consumption model for each treatment task, we choose 
the same features of these data, such as the patient 
information (patient card number, gender, age, etc.), the 
treatment task  

Table 1. Example of treatment records. 

 

Table 2. Formats of the data for different treatment tasks 

 

information (task name, department name, doctor name, 
etc.), and the time information (start time and end time). 
Other feature subspaces of the treatment data are not 
chosen because they are not useful for the PTTP 
algorithm, such as patient name, telephone number, and 
address. 

c)  Calculate New Feature Variables Of The Data 

To train the PTTP model, various important features 
of the data should be calculated, such as the patient time 
consumption of each treatment record, day of week for 
the treatment time, and the time range of treatment time. 

For example, in the treatment record of the CT scan 
task in Table 1, the start time is ``2015-10-10 09:20:00'' 
and the end time is ``2015-10-10 09:27:00'', the time 
consumption for this patient in the treatment is ``420 (s)'', 
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the day of the week is ``Saturday'', and the time range is 
``09''. 

d) Remove Incomplete And Inconsistent Data 

After calculating new feature variables of treatment 
data, the error and noisy data need to be removed. The 
treatment records with missing values for critical features 
are removed as incomplete data, such as patient gender, 
patient age, and task name. The treatment records with 
negative values of time consumption are removed as 
inconsistent data, for instance, if the end time of the 
treatment operation is before the start time, which can 
occur in cases when a start time is recorded by a human 
and an end time is shown by a machine. The types of data 
shown above are considered as noisy data in this paper. 
The features of the treatment data used in the process of 
employing the PTTP algorithm are presented in Table 3. 

Table 3. Features of treatment data for the PTTP algorithm 

 

At the same time, the unselected data in each 
sampling period are composed as an out-of-bag (OOB) 
dataset. k OOB sets are constructed as a collection of 
SOOB: 

SOOB ={SOOB1; SOOB2  ; : : : ;SOOBk}; 

where k N , STrain 2 S, and SOOB 2 S. These datasets 
are used as testing sets after the training process to verify 
the classi cation or regression accuracy of each tree. The 
process of the training dataset random sampling for the 
RF model is shown in Fig. 2. 

C. Constructing Training 

a) Subsets For The PTTP Model 

In the process of employing the PTTP model, the 
treatment time consumption of patients with different 
conditions and different environments in each treatment 
task are addressed. Due to the diverse nature of different 
medical tasks, the range of patient treatment time 
consumption cannot be measured by an absolute standard. 

To improve the accuracy of the PTTP model, an 
improved RF algorithm is used to build the PTTP model. 
k training subsets are sampled from the original training 
dataset S in a bootstrap sampling process. N samples are 
selected from S by a random sampling and replacement 

method in each sampling period. After the current step, k 
training subsets are constructed as a collection of STrain: 

STrain  ={ strain1 ; strain2 ; : : : ; straink }: 

 

Fig 2. Process of training dataset random sampling for 

the PTTP model. 

b) PTTP Model Based On The Improved RF Algorithm 

To predict the waiting time for each patient treatment 
task, the patient treatment time consumption based on 
different patient characteristics and time characteristics 
must first be calculated. The time consumption of each 
treatment task might not lie in same range, which varies 
according to the content of tasks and various 
circumstances, different periods, and different conditions 
of patients. Therefore, we use the RF algorithm to train 
patient treatment time consumption based on both patient 
and time characteristics and then build the PTTP model. 

Because of the limitations of the original RF 
algorithm and the characteristics of hospital treatment 
data, the RF algorithm is improved in 4 aspects to obtain 
an effective result from large-scale, high dimensional, 
continuous, and noisy hospital treatment data. 

1) All of the selected (cleaned) features of the data are 
used in the training process, instead of m features 
selected randomly, as is done in the original RF 
algorithm, because the features of the data are limited 
and the data are already cleaned of unnecessary 
features such as patient name, address, and telephone 
number. 

2) Because the target variable of the treatment data is 
patient treatment time consumption, which is a 
continuous variable, a CART model is used as a meta-
classifier in the improved RF algorithm. At the same 
time, some independent variables of the data are 
nominal data, which have different values such as 
time range (0 - 23) and day of week (Monday - 
Sunday). In such a case, the two-fork tree model of 
the traditional CART cannot fully react the analysis 
results. Therefore, to construct the regression tree 
model felicitously, a multi-branch model is proposed 
for the construction process instead of the two-fork 
model of the traditional CART algorithm. 

3) Although we have removed part of the error in the 
preprocessing, other types of noisy data might also 
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exist. In some treatment tasks, the time consumption 
is the time interval between one patient and the next in 
the same treatment. For example, in a payment task, 
assume that the operation time point of the last patient 
in the morning is ``12:00:00'' and the operation time 
point of the first patient in the afternoon is 
``14:00:00''. The time consumption of the former is 
``7200 (s)'' and is considered as incorrect data because 
it is larger than the normal value of ``100 (s)''. 
However, the value ``7200 (s)'' of time consumption 
has not always been incorrect data, such as in a blood 
examination task. Therefore, we cannot simply 
designate one value of time consumption as noisy 
data; each must be classified according to treatment 
data features. Then, we must identify and remove the 
noisy data. In calculating the average value of the data 
in each leaf node of the regression tree, noisy data are 
removed to reduce their influence on accuracy. 

4) The original RF algorithm uses a traditional direct 
voting method in the prediction process. In such a 
case, a RF containing noisy decision trees would 
likely lead to an incorrect predicted value for the 
testing dataset. Therefore, in this paper, a weighted 
voting method is employed in the prediction process 
of the RF model. Each tree classifier corresponds to a 
specified reasonable weight for voting the testing data. 
A tree classifier that has high accuracy in the training 
process will have a high voting weight in the 
prediction process. Hence, the classifier improves the 
overall classification accuracy of the RF algorithm, 
and reduces the generalization error. 

Compared with the original RF algorithm, our PTTP 
algorithm based on the improved RF algorithm, has 
significant advantages in terms of accuracy and 
performance. 

i) Training Cart Regression Trees Of The RF Model 

Because the patient treatment time consumption is the 
target feature variable of treatment data S, which is a 
continuous value, the type of the single decision tree in 
the RF model is a regression tree. Thus, a CART 
regression tree model is created for each training subset 
straini. 

The first optimization aspect of the RF algorithm is in 
the growing process of each CART tree. All of the M 
features of each training data straini are used in the training 
process instead of the m features selected randomly as is 
done in the original RF algorithm. The main process of 
building the regression tree of CART is described as 
follows. 

In such a case, the variable yj with the smallest value 
of the loss function is selected as the best split feature, 
and the value vp is used as the split point for yj at the 
current splitting tree node. 

ii) Split The Data Into Two Forks 

Split the training dataset into two forks by vp in the 
feature subspace yj.  

Table 4. Summary of the elements in eq. (1). 

RL(yj;vp) denotes the first (left) data subset and 
RR(yj;vp)denotes the second (right) data subset. These 
subsets are denoted as follows: 

RL(yj; vp)={x|(yj ≤ vp)}; 

RR(y j; vp) ={ x|(yj>vp)}:         (2) 

iii) Construct Multi-Branch For The Cart Model  

Some independent variables of data are nominal data, 
which have different values, such as the time range (0 - 
23) and day of week (Monday - Sunday). Therefore, to 
construct the regression tree model felicitously, a multi-
branch regression tree model instead of two-fork tree 
model is used constructing the CART, which is the 
second optimization aspect of the RF algorithm. After the 
tree node split into two forks by variable yj and value vp 
in step (2), the same variable yj continues to be selected to 
calculate the best split point vpL for the data in the left 
branch and vpR for the data in the right branch. Taking the 
left branch as an example, the best split point calculated 
for the current feature subspace is denoted as follows: 

Φ(vpL|yj) = maxi Φ (vi|y):     (3) 

The Φ(vpL|yj)  is defined as follows: 

Φ(vpL|yj) = 2PLPR∑          
    -  p(cj|yR)|;   (4)  

where PL and PR are the ratios of the amount of data in the 
left branch and in the right branch to the entire volume of 
training data, respectively. p(cj|yL ) is the ratio of the 
volume of data that belong to class cj in the left branch to 
the volume of data in the left branch. 

If the split value of Φ (vpL|yj) is greater than the father 
node, namely Φ (vpL |yj) Φ (vp|yj), then the left branch 
continues to split by the variable yj and value vpL. 
Otherwise, the remaining feature variables continue to be 
computed. The right branch is calculated similarly. Then, 
each node and its two subnodes are calculated 
successively. If the same variable split exists in both the 
parent node and the child node, a node merger operation 
should be done. Consequently, a multi-branch node of the 
tree is constructed. An example of multi-branch splitting 
for the CART model is shown in Fig. 3. 
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Fig 3. Example of multi-branch splitting for the CART 

model. 

Repeat steps (1 - 3) until the data in each branch are 
classified in one class as a leaf node. 

iv) Calculate Mean Value Of Leaf Nodes After Removal 
Of Noisy Data 

Although we have removed part of the error data in 
the preprocessing, other types of noisy data mentioned 
above might exist. Therefore, the third optimization 
aspect of the RF algorithm is to reduce the influence that 
the noisy data have on the algorithm accuracy. A boxplot-
based noise removal method is performed in the value 
calculation of each CART leaf node. 

The data in the current leaf node are sorted in 
ascending order. Then, the values of three data points Q1, 
Q2, Q3 of the box-plot model are calculated, where Q2 is 
the median data point and Q1 and Q3 are the lower and 
upper four digits of the data, respectively. The inner limit 
of the noisy data is denoted as follows: 

  IL = Q1- 1:5(IQR) = Q1- 1:5(Q3-Q1):     (5) 

The outer limit of the noisy data is denoted as follows: 

OL = Q3+1:5(IQR) = Q3+1:5(Q3   Q1):     (6) 

The data outside the range of {IL; OL} are removed 
as noisy data. After removing the noisy data, the average 
value cj of the data yj is calculated in each leaf node of the 
regression tree. This splitting process is repeated until all 
of the feature values are generated. A CART regression 
tree for the training subset Straini is trained, and the tree 
model is denoted as follows: 

hi(x, Θ )= ∑   
   nI(xRn) :                  (7) 

where N is the number of leaf nodes of the tree, 2j is 
the target feature variable, and I ( ) is an indicator 
function. A meta CART regression tree of the PTTP 
model is shown in Fig. 4. 

v) Calculate The Accuracy Of Each Tree 

After each regression tree of the training subset Straini 

is built, the testing subset SOOBi is used to calculate the 

accuracy of the meta-classi er tree. The accuracy of a 

metaclassifier tree refers to the ratio of average number of 

votes in correct classes to all of the error classes, which 

are classified by the trained meta-classifier tree.  

 The PTTP model based on the random forest 
algorithm is shown in Fig. 5. 

 

 

Fig 4. Meta CART tree of the PTTP model 

 

Fig 5. PTTP model based on the RF algorithm 

c) Hospital Queuing Recommendation System Based 

On PTTP Model 

After training the PTTP model for each treatment task 
using historical hospital treatment data, a PTTP-based 
hospital queue recommendation system is developed. An 
efficient and convenient treatment plan is created and 
recommended to each patient to achieve intelligent triage. 

Assume that there are various treatment tasks for each 
patient according to the patient's condition, such as 
examinations and inspections. Let Tasks = {Task1; 
Task2; : : : ; Taskn} be a set of treatment tasks that the 
current patient must complete, and let Ui ={ Ui1; Ui2; : : : 
; Uim} be a set of patients in waiting the queue for Taski. 
The process of the HQR system based on the PTTP 
model is shown in Fig. 6. 

PTTP model according to the patient's characteristics 
(such as gender and age), time factors (such as the week 
and month of the current time), and other factors (such as 
treatment departments, available machines, and service 
windows). The patient treatment time consumption Tik of 
patient Uik in queue is denoted as follows: 

Tik = H (Xik; Θj)       (8) 

=
 

 
∑   

   Ai * hi(x, Θ  ]        9  

where Xik is the treatment data of patient Uik , Θj is all 
of the independent variables of Xik , CAi is the accuracy 
weight of tree hi, and hi(x; Θj) is a result of patient 
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treatment time consumption predicted by a single CART 
regression tree. 

 

Fig 6. Process of the HDR system based on the PTTP 

model 

Then, all of the predicted patient treatment time 
consumption of patients in the queue is added to obtain 
the waiting time of Taski, which is denoted as Ti. The 
calculation formula of Ti is denoted as follows: 

   
 

  
∑   

   ik           (10) 

where Wi is the number of service windows or 
workbenches that can provide a service for treatment task 
Taski in parallel, m is the number of patients waiting in 
the queue of Taski , and Tik denotes the predicted waiting 
time for the patient-in-waiting Patientk . 

D. Parallel Implementation Of The Hqr System  

Usually, there are a number of treatment tasks for 
each patient, and many patients waiting in the queue of 
each treatment task. Therefore, a parallel HQR system is 
implemented for each patient if there is more than one 
treatment task for the patients. The process of the parallel 
HQR system is shown in Fig. 7. 

Assume that there are n treatment tasks for the current 
patient to complete and that there is a number of patients 
waiting in the queue of each treatment task. In the 
parallelization solution, n RDD objects are created to 
refer to the n treatment tasks. There is a number of 
partitions in each RDD object that refer to patients 
waiting in the queue of each task. Let partition Uij be the 
jth patient waiting for the ith treatment task. 

S of the patient might generate in the ith task, as 
predicted by the trained PTTP model. In this step, the 
time consumption for each patient Uij is calculated with 
the k trained CART trees of the RF-based PTTP model in 
a shuffle() function, and the predicted patient treatment 
time  consumption Tij is derived. 

Step 2: The patient treatment time consumption of all 
ofthe patients in each task is added in a sum() function, 
and the predicted waiting time T i of each task is 
obtained. An RDD object ( Taski; Ti) is created for each 
task. 

 

 

Fig 7. Parallelization recommendation process of the 

HQR system 

Step 3: The predicted waiting times for all of the tasks 
for the current patient are sorted in ascending order with a 
sort() function. A new RDD object Ts is created to save 
the sorted waiting times of all of the treatment tasks. 
Hence, the parallel hospital queuing recommendation 
schema for the current patient is performed. 

a) Average Waiting Time For Patients 

To evaluate the efficiency of our HQR system, 
various experiments about average waiting time for 
patients in the with-HQR case with that in the without-
HQR case are performed. Each case is under the 
treatment data with 5000 patients and 20,000 treatment 
records. We accounted and compared the average waiting 
time of patients in the with HQR case with that in the 
without-HQR case. The results of comparison are 
presented in Fig. 13. 

 

 

 

Fig 8. Average waiting time for patients. 
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It is easy to observe from Fig. 13 that the advantage of 
the average waiting time of patients in cases of with-HQR 
is greater than in cases of without-HQR. Moreover, the 
more patients treatment tasks are, the more obvious is for 
this advantage. When the number of tasks required for 
each patient is equal to 2, the average waiting time of 
each patient is approximately 15 min in the without-HQR 
case (the original case), while 12 min in the with-HQR 
case. When there are 6 treatment tasks required for each 
patient, the average waiting time is approximately 118 
min in the former case, while 63 min in the latter case. 

III. CONCLUSION 

In this paper, a PTTP algorithm based on big data and 
the Apache Spark cloud environment is proposed. A 
random forest optimization algorithm is performed for the 
PTTP model. The queue waiting time of each treatment 
task is predicted based on the trained PTTP model. A 
parallel HQR system is developed, and an ef cient and 
convenient treatment plan is recommended for each 
patient. Extensive experiments and application results 
show that our PTTP algorithm and HQR system achieve 
high precision and performance. 

Hospitals' data volumes are increasing every day. The 
workload of training the historical data in each set of 
hospital guide recommendations is expected to be very 
high, but it need not be. Consequently, an 
incrementalPTTP algorithm based on streaming data and 
a more convenient recommendation with minimized 
pathawareness are suggested for future work. 
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